Kernel-3.10.0-957.el7_rcuref

Reference-count design for elements of lists/arrays protected by RCU.

Reference counting on elements of lists which are protected by traditional
reader/writer spinlocks or semaphores are straightforward:

  1.         2.
    

    add() search_and_reference()
    { {
    alloc_object read_lock(&list_lock);
    … search_for_element
    atomic_set(&el->rc, 1); atomic_inc(&el->rc);
    write_lock(&list_lock); …
    add_element read_unlock(&list_lock);
    … …
    write_unlock(&list_lock); }
    }

  2.             4.
    

    release_referenced() delete()
    { {
    … write_lock(&list_lock);
    atomic_dec(&el->rc, relfunc) …
    … remove_element
    } write_unlock(&list_lock);

                      ...
                     if (atomic_dec_and_test(&el->rc))
                         kfree(el);
                     ...
                 }
    

If this list/array is made lock free using RCU as in changing the
write_lock() in add() and delete() to spin_lock() and changing read_lock()
in search_and_reference() to rcu_read_lock(), the atomic_inc() in
search_and_reference() could potentially hold reference to an element which
has already been deleted from the list/array. Use atomic_inc_not_zero()
in this scenario as follows:

  1.             2.
    
    add() search_and_reference()
    { {
    alloc_object rcu_read_lock();
    … search_for_element
    atomic_set(&el->rc, 1); if (!atomic_inc_not_zero(&el->rc)) {
    spin_lock(&list_lock); rcu_read_unlock();
                         return FAIL;
    
    add_element }
    … …
    spin_unlock(&list_lock); rcu_read_unlock();
    } }
  2.             4.
    
    release_referenced() delete()
    { {
    … spin_lock(&list_lock);
    if (atomic_dec_and_test(&el->rc)) …
     call_rcu(&el->head, el_free);       remove_element
    
    … spin_unlock(&list_lock);
    } …
                     if (atomic_dec_and_test(&el->rc))
                         call_rcu(&el->head, el_free);
                     ...
                 }
    

Sometimes, a reference to the element needs to be obtained in the
update (write) stream. In such cases, atomic_inc_not_zero() might be
overkill, since we hold the update-side spinlock. One might instead
use atomic_inc() in such cases.

It is not always convenient to deal with “FAIL” in the
search_and_reference() code path. In such cases, the
atomic_dec_and_test() may be moved from delete() to el_free()
as follows:

  1.             2.
    

    add() search_and_reference()
    { {
    alloc_object rcu_read_lock();
    … search_for_element
    atomic_set(&el->rc, 1); atomic_inc(&el->rc);
    spin_lock(&list_lock); …

    add_element rcu_read_unlock();
    … }
    spin_unlock(&list_lock); 4.
    } delete()

  2.             {
    

    release_referenced() spin_lock(&list_lock);
    { …
    … remove_element
    if (atomic_dec_and_test(&el->rc)) spin_unlock(&list_lock);

     kfree(el);                ...
    

    … call_rcu(&el->head, el_free);
    } …

  3.             }
    

    void el_free(struct rcu_head *rhp)
    {
    release_referenced();
    }

The key point is that the initial reference added by add() is not removed
until after a grace period has elapsed following removal. This means that
search_and_reference() cannot find this element, which means that the value
of el->rc cannot increase. Thus, once it reaches zero, there are no
readers that can or ever will be able to reference the element. The
element can therefore safely be freed. This in turn guarantees that if
any reader finds the element, that reader may safely acquire a reference
without checking the value of the reference counter.

In cases where delete() can sleep, synchronize_rcu() can be called from
delete(), so that el_free() can be subsumed into delete as follows:

4.
delete()
{
spin_lock(&list_lock);

remove_element
spin_unlock(&list_lock);

synchronize_rcu();
if (atomic_dec_and_test(&el->rc))
kfree(el);

}