=====================================================================
SEC 4 Device Tree Binding
Copyright (C) 2008-2011 Freescale Semiconductor Inc.
CONTENTS
-Overview
-SEC 4 Node
-Job Ring Node
-Run Time Integrity Check (RTIC) Node
-Run Time Integrity Check (RTIC) Memory Node
-Secure Non-Volatile Storage (SNVS) Node
-Secure Non-Volatile Storage (SNVS) Low Power (LP) RTC Node
-Full Example
NOTE: the SEC 4 is also known as Freescale’s Cryptographic Accelerator
Accelerator and Assurance Module (CAAM).
=====================================================================
Overview
DESCRIPTION
SEC 4 h/w can process requests from 2 types of sources.
- DPAA Queue Interface (HW interface between Queue Manager & SEC 4).
- Job Rings (HW interface between cores & SEC 4 registers).
High Speed Data Path Configuration:
HW interface between QM & SEC 4 and also BM & SEC 4, on DPAA-enabled parts
such as the P4080. The number of simultaneous dequeues the QI can make is
equal to the number of Descriptor Controller (DECO) engines in a particular
SEC version. E.g., the SEC 4.0 in the P4080 has 5 DECOs and can thus
dequeue from 5 subportals simultaneously.
Job Ring Data Path Configuration:
Each JR is located on a separate 4k page, they may (or may not) be made visible
in the memory partition devoted to a particular core. The P4080 has 4 JRs, so
up to 4 JRs can be configured; and all 4 JRs process requests in parallel.
=====================================================================
SEC 4 Node
Description
Node defines the base address of the SEC 4 block.
This block specifies the address range of all global
configuration registers for the SEC 4 block. It
also receives interrupts from the Run Time Integrity Check
(RTIC) function within the SEC 4 block.
PROPERTIES
compatible
Usage: required
Value type:
Definition: Must include “fsl,sec-v4.0”fsl,sec-era
Usage: optional
Value type:
Definition: A standard property. Define the ‘ERA’ of the SECdevice.
#address-cells
Usage: required
Value type:
Definition: A standard property. Defines the number of cellsfor representing physical addresses in child nodes.
#size-cells
Usage: required
Value type:
Definition: A standard property. Defines the number of cellsfor representing the size of physical addresses in child nodes.
reg
Usage: required
Value type:
Definition: A standard property. Specifies the physicaladdress and length of the SEC4 configuration registers. registers
ranges
Usage: required
Value type:
Definition: A standard property. Specifies the physical addressrange of the SEC 4.0 register space (-SNVS not included). A triplet that includes the child address, parent address, & length.
interrupts
Usage: required
Value type:
Definition: Specifies the interrupts generated by thisdevice. The value of the interrupts property consists of one interrupt specifier. The format of the specifier is defined by the binding document describing the node's interrupt parent.
interrupt-parent
Usage: (required if interrupt property is defined)
Value type:
Definition: A singlevalue that points to the interrupt parent to which the child domain is being mapped.
Note: All other standard properties (see the ePAPR) are allowed
but are optional.
EXAMPLE
crypto@300000 {
compatible = “fsl,sec-v4.0”;
fsl,sec-era = <2>;
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
};
=====================================================================
Job Ring (JR) Node
Child of the crypto node defines data processing interface to SEC 4
across the peripheral bus for purposes of processing
cryptographic descriptors. The specified address
range can be made visible to one (or more) cores.
The interrupt defined for this node is controlled within
the address range of this node.
compatible
Usage: required
Value type:
Definition: Must include “fsl,sec-v4.0-job-ring”reg
Usage: required
Value type:
Definition: Specifies a two JR parameters: an offset fromthe parent physical address and the length the JR registers.
fsl,liodn
Usage: optional-but-recommended
Value type:
Definition:Specifies the LIODN to be used in conjunction with the ppid-to-liodn table that specifies the PPID to LIODN mapping. Needed if the PAMU is used. Value is a 12 bit value where value is a LIODN ID for this JR. This property is normally set by boot firmware.
interrupts
Usage: required
Value type:
Definition: Specifies the interrupts generated by thisdevice. The value of the interrupts property consists of one interrupt specifier. The format of the specifier is defined by the binding document describing the node's interrupt parent.
interrupt-parent
Usage: (required if interrupt property is defined)
Value type:
Definition: A singlevalue that points to the interrupt parent to which the child domain is being mapped.
EXAMPLE
jr@1000 {
compatible = “fsl,sec-v4.0-job-ring”;
reg = <0x1000 0x1000>;
fsl,liodn = <0x081>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
=====================================================================
Run Time Integrity Check (RTIC) Node
Child node of the crypto node. Defines a register space that
contains up to 5 sets of addresses and their lengths (sizes) that
will be checked at run time. After an initial hash result is
calculated, these addresses are checked by HW to monitor any
change. If any memory is modified, a Security Violation is
triggered (see SNVS definition).
compatible
Usage: required
Value type:
Definition: Must include “fsl,sec-v4.0-rtic”.#address-cells
Usage: required
Value type:
Definition: A standard property. Defines the number of cellsfor representing physical addresses in child nodes. Must have a value of 1.
#size-cells
Usage: required
Value type:
Definition: A standard property. Defines the number of cellsfor representing the size of physical addresses in child nodes. Must have a value of 1.
reg
Usage: required
Value type:
Definition: A standard property. Specifies a two parameters:an offset from the parent physical address and the length the SEC4 registers.
ranges
Usage: required
Value type:
Definition: A standard property. Specifies the physical addressrange of the SEC 4 register space (-SNVS not included). A triplet that includes the child address, parent address, & length.
EXAMPLE
rtic@6000 {
compatible = “fsl,sec-v4.0-rtic”;
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
};
=====================================================================
Run Time Integrity Check (RTIC) Memory Node
A child node that defines individual RTIC memory regions that are used to
perform run-time integrity check of memory areas that should not modified.
The node defines a register that contains the memory address &
length (combined) and a second register that contains the hash result
in big endian format.
compatible
Usage: required
Value type:
Definition: Must include “fsl,sec-v4.0-rtic-memory”.reg
Usage: required
Value type:
Definition: A standard property. Specifies two parameters:an offset from the parent physical address and the length: 1. The location of the RTIC memory address & length registers. 2. The location RTIC hash result.
fsl,rtic-region
Usage: optional-but-recommended
Value type:
Definition:Specifies the HW address (36 bit address) for this region followed by the length of the HW partition to be checked; the address is represented as a 64 bit quantity followed by a 32 bit length.
fsl,liodn
Usage: optional-but-recommended
Value type:
Definition:Specifies the LIODN to be used in conjunction with the ppid-to-liodn table that specifies the PPID to LIODN mapping. Needed if the PAMU is used. Value is a 12 bit value where value is a LIODN ID for this RTIC memory region. This property is normally set by boot firmware.
EXAMPLE
rtic-a@0 {
compatible = “fsl,sec-v4.0-rtic-memory”;
reg = <0x00 0x20 0x100 0x80>;
fsl,liodn = <0x03c>;
fsl,rtic-region = <0x12345678 0x12345678 0x12345678>;
};
=====================================================================
Secure Non-Volatile Storage (SNVS) Node
Node defines address range and the associated
interrupt for the SNVS function. This function
monitors security state information & reports
security violations.
compatible
Usage: required
Value type:
Definition: Must include “fsl,sec-v4.0-mon”.reg
Usage: required
Value type:
Definition: A standard property. Specifies the physicaladdress and length of the SEC4 configuration registers.
#address-cells
Usage: required
Value type:
Definition: A standard property. Defines the number of cellsfor representing physical addresses in child nodes. Must have a value of 1.
#size-cells
Usage: required
Value type:
Definition: A standard property. Defines the number of cellsfor representing the size of physical addresses in child nodes. Must have a value of 1.
ranges
Usage: required
Value type:
Definition: A standard property. Specifies the physical addressrange of the SNVS register space. A triplet that includes the child address, parent address, & length.
interrupts
Usage: required
Value type:
Definition: Specifies the interrupts generated by thisdevice. The value of the interrupts property consists of one interrupt specifier. The format of the specifier is defined by the binding document describing the node's interrupt parent.
interrupt-parent
Usage: (required if interrupt property is defined)
Value type:
Definition: A singlevalue that points to the interrupt parent to which the child domain is being mapped.
EXAMPLE
sec_mon@314000 {
compatible = “fsl,sec-v4.0-mon”;
reg = <0x314000 0x1000>;
ranges = <0 0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
=====================================================================
Secure Non-Volatile Storage (SNVS) Low Power (LP) RTC Node
A SNVS child node that defines SNVS LP RTC.
compatible
Usage: required
Value type:
Definition: Must include “fsl,sec-v4.0-mon-rtc-lp”.reg
Usage: required
Value type:
Definition: A standard property. Specifies the physicaladdress and length of the SNVS LP configuration registers.
EXAMPLE
sec_mon_rtc_lp@314000 {
compatible = “fsl,sec-v4.0-mon-rtc-lp”;
reg = <0x34 0x58>;
};
=====================================================================
FULL EXAMPLE
crypto: crypto@300000 {
compatible = "fsl,sec-v4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
sec_jr0: jr@1000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x1000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
sec_jr1: jr@2000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x2000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <89 2>;
};
sec_jr2: jr@3000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x3000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <90 2>;
};
sec_jr3: jr@4000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x4000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <91 2>;
};
rtic@6000 {
compatible = "fsl,sec-v4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
rtic_a: rtic-a@0 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
};
rtic_b: rtic-b@20 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x20 0x20 0x200 0x80>;
};
rtic_c: rtic-c@40 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x40 0x20 0x300 0x80>;
};
rtic_d: rtic-d@60 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x60 0x20 0x500 0x80>;
};
};
};
sec_mon: sec_mon@314000 {
compatible = "fsl,sec-v4.0-mon";
reg = <0x314000 0x1000>;
ranges = <0 0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
sec_mon_rtc_lp@34 {
compatible = "fsl,sec-v4.0-mon-rtc-lp";
reg = <0x34 0x58>;
};
};
=====================================================================