Kernel-2.6.32-573.12.1.el6_pxa_camera

                          PXA-Camera Host Driver
                          ======================

Constraints

a) Image size for YUV422P format
All YUV422P images are enforced to have width x height % 16 = 0.
This is due to DMA constraints, which transfers only planes of 8 byte
multiples.

Global video workflow

a) QCI stopped
Initialy, the QCI interface is stopped.
When a buffer is queued (pxa_videobuf_ops->buf_queue), the QCI starts.

b) QCI started
More buffers can be queued while the QCI is started without halting the
capture. The new buffers are “appended” at the tail of the DMA chain, and
smoothly captured one frame after the other.

 Once a buffer is filled in the QCI interface, it is marked as "DONE" and
 removed from the active buffers list. It can be then requeud or dequeued by
 userland application.

 Once the last buffer is filled in, the QCI interface stops.

c) Capture global finite state machine schema

  +----+                             +---+  +----+
  | DQ |                             | Q |  | DQ |
  |    v                             |   v  |    v
+-----------+                     +------------------------+
|   STOP    |                     | Wait for capture start |
+-----------+         Q           +------------------------+

+-> | QCI: stop | ——————> | QCI: run | <————+
| | DMA: stop | | DMA: stop | |
| +———–+ +—–> +————————+ |
| / | |
| / +—+ +—-+ | |
|capture list empty / | Q | | DQ | | QCI Irq EOF |
| / | v | v v |
| +——————–+ +———————-+ |
| | DMA hotlink missed | | Capture running | |
| +——————–+ +———————-+ |
| | QCI: run | +—–> | QCI: run | <-+ |
| | DMA: stop | / | DMA: run | | |
| +——————–+ / +———————-+ | Other |
| ^ /DMA still | | channels |
| | capture list / running | DMA Irq End | not |
| | not empty / | | finished |
| | / v | yet |
| +———————-+ +———————-+ | |
| | Videobuf released | | Channel completed | | |
| +———————-+ +———————-+ | |
+– | QCI: run | | QCI: run | –+ |
| DMA: run | | DMA: run | |
+———————-+ +———————-+ |
^ / | |
| no overrun / | overrun |
| / v |
+——————–+ / +———————-+ |
| Frame completed | / | Frame overran | |
+——————–+ <—–+ +———————-+ restart frame |
| QCI: run | | QCI: stop | ————–+
| DMA: run | | DMA: stop |
+——————–+ +———————-+

Legend: - each box is a FSM state
        - each arrow is the condition to transition to another state
        - an arrow with a comment is a mandatory transition (no condition)
        - arrow "Q" means : a buffer was enqueued
        - arrow "DQ" means : a buffer was dequeued
        - "QCI: stop" means the QCI interface is not enabled
        - "DMA: stop" means all 3 DMA channels are stopped
        - "DMA: run" means at least 1 DMA channel is still running

DMA usage

a) DMA flow
- first buffer queued for capture
Once a first buffer is queued for capture, the QCI is started, but data
transfer is not started. On “End Of Frame” interrupt, the irq handler
starts the DMA chain.
- capture of one videobuffer
The DMA chain starts transfering data into videobuffer RAM pages.
When all pages are transfered, the DMA irq is raised on “ENDINTR” status
- finishing one videobuffer
The DMA irq handler marks the videobuffer as “done”, and removes it from
the active running queue
Meanwhile, the next videobuffer (if there is one), is transfered by DMA
- finishing the last videobuffer
On the DMA irq of the last videobuffer, the QCI is stopped.

b) DMA prepared buffer will have this structure

 +------------+-----+---------------+-----------------+
 | desc-sg[0] | ... | desc-sg[last] | finisher/linker |
 +------------+-----+---------------+-----------------+

 This structure is pointed by dma->sg_cpu.
 The descriptors are used as follows :
  - desc-sg[i]: i-th descriptor, transfering the i-th sg
    element to the video buffer scatter gather
  - finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN
  - linker: has ddadr= desc-sg[0] of next video buffer, dcmd=0

 For the next schema, let's assume d0=desc-sg[0] .. dN=desc-sg[N],
 "f" stands for finisher and "l" for linker.
 A typical running chain is :

     Videobuffer 1         Videobuffer 2
 +---------+----+---+  +----+----+----+---+
 | d0 | .. | dN | l |  | d0 | .. | dN | f |
 +---------+----+-|-+  ^----+----+----+---+
                  |    |
                  +----+

 After the chaining is finished, the chain looks like :

     Videobuffer 1         Videobuffer 2         Videobuffer 3
 +---------+----+---+  +----+----+----+---+  +----+----+----+---+
 | d0 | .. | dN | l |  | d0 | .. | dN | l |  | d0 | .. | dN | f |
 +---------+----+-|-+  ^----+----+----+-|-+  ^----+----+----+---+
                  |    |                |    |
                  +----+                +----+
                                       new_link

c) DMA hot chaining timeslice issue

 As DMA chaining is done while DMA _is_ running, the linking may be done
 while the DMA jumps from one Videobuffer to another. On the schema, that
 would be a problem if the following sequence is encountered :

  - DMA chain is Videobuffer1 + Videobuffer2
  - pxa_videobuf_queue() is called to queue Videobuffer3
  - DMA controller finishes Videobuffer2, and DMA stops
  =>
     Videobuffer 1         Videobuffer 2
 +---------+----+---+  +----+----+----+---+
 | d0 | .. | dN | l |  | d0 | .. | dN | f |
 +---------+----+-|-+  ^----+----+----+-^-+
                  |    |                |
                  +----+                +-- DMA DDADR loads DDADR_STOP

  - pxa_dma_add_tail_buf() is called, the Videobuffer2 "finisher" is
    replaced by a "linker" to Videobuffer3 (creation of new_link)
  - pxa_videobuf_queue() finishes
  - the DMA irq handler is called, which terminates Videobuffer2
  - Videobuffer3 capture is not scheduled on DMA chain (as it stopped !!!)

     Videobuffer 1         Videobuffer 2         Videobuffer 3
 +---------+----+---+  +----+----+----+---+  +----+----+----+---+
 | d0 | .. | dN | l |  | d0 | .. | dN | l |  | d0 | .. | dN | f |
 +---------+----+-|-+  ^----+----+----+-|-+  ^----+----+----+---+
                  |    |                |    |
                  +----+                +----+
                                       new_link
                                      DMA DDADR still is DDADR_STOP

  - pxa_camera_check_link_miss() is called
    This checks if the DMA is finished and a buffer is still on the
    pcdev->capture list. If that's the case, the capture will be restarted,
    and Videobuffer3 is scheduled on DMA chain.
  - the DMA irq handler finishes

 Note: if DMA stops just after pxa_camera_check_link_miss() reads DDADR()
 value, we have the guarantee that the DMA irq handler will be called back
 when the DMA will finish the buffer, and pxa_camera_check_link_miss() will
 be called again, to reschedule Videobuffer3.


Author: Robert Jarzmik robert.jarzmik@free.fr