Guidance for writing policies
Try to keep transactionality out of it. The core is careful to
avoid asking about anything that is migrating. This is a pain, but
makes it easier to write the policies.
Mappings are loaded into the policy at construction time.
Every bio that is mapped by the target is referred to the policy.
The policy can return a simple HIT or MISS or issue a migration.
Currently there’s no way for the policy to issue background work,
e.g. to start writing back dirty blocks that are going to be evicte
soon.
Because we map bios, rather than requests it’s easy for the policy
to get fooled by many small bios. For this reason the core target
issues periodic ticks to the policy. It’s suggested that the policy
doesn’t update states (eg, hit counts) for a block more than once
for each tick. The core ticks by watching bios complete, and so
trying to see when the io scheduler has let the ios run.
Overview of supplied cache replacement policies
multiqueue
This policy is the default.
The multiqueue policy has three sets of 16 queues: one set for entries
waiting for the cache and another two for those in the cache (a set for
clean entries and a set for dirty entries).
Cache entries in the queues are aged based on logical time. Entry into
the cache is based on variable thresholds and queue selection is based
on hit count on entry. The policy aims to take different cache miss
costs into account and to adjust to varying load patterns automatically.
Message and constructor argument pairs are:
‘sequential_threshold <#nr_sequential_ios>’
‘random_threshold <#nr_random_ios>’
‘read_promote_adjustment
‘write_promote_adjustment
‘discard_promote_adjustment
The sequential threshold indicates the number of contiguous I/Os
required before a stream is treated as sequential. Once a stream is
considered sequential it will bypass the cache. The random threshold
is the number of intervening non-contiguous I/Os that must be seen
before the stream is treated as random again.
The sequential and random thresholds default to 512 and 4 respectively.
Large, sequential I/Os are probably better left on the origin device
since spindles tend to have good sequential I/O bandwidth. The
io_tracker counts contiguous I/Os to try to spot when the I/O is in one
of these sequential modes. But there are use-cases for wanting to
promote sequential blocks to the cache (e.g. fast application startup).
If sequential threshold is set to 0 the sequential I/O detection is
disabled and sequential I/O will no longer implicitly bypass the cache.
Setting the random threshold to 0 does not disable the random I/O
stream detection.
Internally the mq policy determines a promotion threshold. If the hit
count of a block not in the cache goes above this threshold it gets
promoted to the cache. The read, write and discard promote adjustment
tunables allow you to tweak the promotion threshold by adding a small
value based on the io type. They default to 4, 8 and 1 respectively.
If you’re trying to quickly warm a new cache device you may wish to
reduce these to encourage promotion. Remember to switch them back to
their defaults after the cache fills though.
cleaner
The cleaner writes back all dirty blocks in a cache to decommission it.
Examples
The syntax for a table is:
cache
<#feature_args> [
The syntax to send a message using the dmsetup command is:
dmsetup message
dmsetup message
Using dmsetup:
dmsetup create blah –table “0 268435456 cache /dev/sdb /dev/sdc
/dev/sdd 512 0 mq 4 sequential_threshold 1024 random_threshold 8”
creates a 128GB large mapped device named ‘blah’ with the
sequential threshold set to 1024 and the random_threshold set to 8.