GPMC (General Purpose Memory Controller):
GPMC is an unified memory controller dedicated to interfacing external
memory devices like
- Asynchronous SRAM like memories and application specific integrated
circuit devices. - Asynchronous, synchronous, and page mode burst NOR flash devices
NAND flash - Pseudo-SRAM devices
GPMC is found on Texas Instruments SoC’s (OMAP based)
IP details: http://www.ti.com/lit/pdf/spruh73 section 7.1
GPMC generic timing calculation:
GPMC has certain timings that has to be programmed for proper
functioning of the peripheral, while peripheral has another set of
timings. To have peripheral work with gpmc, peripheral timings has to
be translated to the form gpmc can understand. The way it has to be
translated depends on the connected peripheral. Also there is a
dependency for certain gpmc timings on gpmc clock frequency. Hence a
generic timing routine was developed to achieve above requirements.
Generic routine provides a generic method to calculate gpmc timings
from gpmc peripheral timings. struct gpmc_device_timings fields has to
be updated with timings from the datasheet of the peripheral that is
connected to gpmc. A few of the peripheral timings can be fed either
in time or in cycles, provision to handle this scenario has been
provided (refer struct gpmc_device_timings definition). It may so
happen that timing as specified by peripheral datasheet is not present
in timing structure, in this scenario, try to correlate peripheral
timing to the one available. If that doesn’t work, try to add a new
field as required by peripheral, educate generic timing routine to
handle it, make sure that it does not break any of the existing.
Then there may be cases where peripheral datasheet doesn’t mention
certain fields of struct gpmc_device_timings, zero those entries.
Generic timing routine has been verified to work properly on
multiple onenand’s and tusb6010 peripherals.
A word of caution: generic timing routine has been developed based
on understanding of gpmc timings, peripheral timings, available
custom timing routines, a kind of reverse engineering without
most of the datasheets & hardware (to be exact none of those supported
in mainline having custom timing routine) and by simulation.
gpmc timing dependency on peripheral timings:
[
common
cs_on: t_ceasu
adv_on: t_avdasu, t_ceavdsync common
sync_clk: clk
page_burst_access: t_bacc
clk_activation: t_ces, t_avdsread async muxed
adv_rd_off: t_avdp_r
oe_on: t_oeasu, t_aavdh
access: t_iaa, t_oe, t_ce, t_aa
rd_cycle: t_rd_cycle, t_cez_r, t_oezread async non-muxed
adv_rd_off: t_avdp_r
oe_on: t_oeasu
access: t_iaa, t_oe, t_ce, t_aa
rd_cycle: t_rd_cycle, t_cez_r, t_oezread sync muxed
adv_rd_off: t_avdp_r, t_avdh
oe_on: t_oeasu, t_ach, cyc_aavdh_oe
access: t_iaa, cyc_iaa, cyc_oe
rd_cycle: t_cez_r, t_oez, t_ce_rdyzread sync non-muxed
adv_rd_off: t_avdp_r
oe_on: t_oeasu
access: t_iaa, cyc_iaa, cyc_oe
rd_cycle: t_cez_r, t_oez, t_ce_rdyzwrite async muxed
adv_wr_off: t_avdp_w
we_on, wr_data_mux_bus: t_weasu, t_aavdh, cyc_aavhd_we
we_off: t_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_wr_cyclewrite async non-muxed
adv_wr_off: t_avdp_w
we_on, wr_data_mux_bus: t_weasu
we_off: t_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_wr_cyclewrite sync muxed
adv_wr_off: t_avdp_w, t_avdh
we_on, wr_data_mux_bus: t_weasu, t_rdyo, t_aavdh, cyc_aavhd_we
we_off: t_wpl, cyc_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_ce_rdyzwrite sync non-muxed
adv_wr_off: t_avdp_w
we_on, wr_data_mux_bus: t_weasu, t_rdyo
we_off: t_wpl, cyc_wpl
cs_wr_off: t_wph
wr_cycle: t_cez_w, t_ce_rdyz
Note: Many of gpmc timings are dependent on other gpmc timings (a few
gpmc timings purely dependent on other gpmc timings, a reason that
some of the gpmc timings are missing above), and it will result in
indirect dependency of peripheral timings to gpmc timings other than
mentioned above, refer timing routine for more details. To know what
these peripheral timings correspond to, please see explanations in
struct gpmc_device_timings definition. And for gpmc timings refer
IP details (link above).