Intel Integrated Sensor Hub (ISH)
A sensor hub enables the ability to offload sensor polling and algorithm
processing to a dedicated low power co-processor. This allows the core
processor to go into low power modes more often, resulting in the increased
battery life.
There are many vendors providing external sensor hubs confirming to HID
Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops
and embedded products. Linux had this support since Linux 3.9.
Intel® introduced integrated sensor hubs as a part of the SoC starting from
Cherry Trail and now supported on multiple generations of CPU packages. There
are many commercial devices already shipped with Integrated Sensor Hubs (ISH).
These ISH also comply to HID sensor specification, but the difference is the
transport protocol used for communication. The current external sensor hubs
mainly use HID over i2C or USB. But ISH doesn’t use either i2c or USB.
- Overview
Using a analogy with a usbhid implementation, the ISH follows a similar model
for a very high speed communication:
----------------- ----------------------
| USB HID | --> | ISH HID |
----------------- ----------------------
----------------- ----------------------
| USB protocol | --> | ISH Transport |
----------------- ----------------------
----------------- ----------------------
| EHCI/XHCI | --> | ISH IPC |
----------------- ----------------------
PCI PCI
----------------- ----------------------
|Host controller| --> | ISH processor |
----------------- ----------------------
USB Link
----------------- ----------------------
| USB End points| --> | ISH Clients |
----------------- ----------------------
Like USB protocol provides a method for device enumeration, link management
and user data encapsulation, the ISH also provides similar services. But it is
very light weight tailored to manage and communicate with ISH client
applications implemented in the firmware.
The ISH allows multiple sensor management applications executing in the
firmware. Like USB endpoints the messaging can be to/from a client. As part of
enumeration process, these clients are identified. These clients can be simple
HID sensor applications, sensor calibration application or senor firmware
update application.
The implementation model is similar, like USB bus, ISH transport is also
implemented as a bus. Each client application executing in the ISH processor
is registered as a device on this bus. The driver, which binds each device
(ISH HID driver) identifies the device type and registers with the hid core.
ISH Implementation: Block Diagram
User Space Applications
—————-IIO ABI—————-
————————–
| IIO Sensor Drivers |
————————–
————————–
| IIO core |
————————–
————————–
| HID Sensor Hub MFD |
————————–
————————–
| HID Core |
————————–
————————–
| HID over ISH Client |
————————–
————————–
| ISH Transport (ISHTP) |
————————–
————————–
| IPC Drivers |
————————–
OS
—————- PCI —————–
Hardware + Firmware
—————————-
| ISH Hardware/Firmware(FW) |
—————————-
- High level processing in above blocks
3.1 Hardware Interface
The ISH is exposed as “Non-VGA unclassified PCI device” to the host. The PCI
product and vendor IDs are changed from different generations of processors. So
the source code which enumerate drivers needs to update from generation to
generation.
3.2 Inter Processor Communication (IPC) driver
Location: drivers/hid/intel-ish-hid/ipc
The IPC message used memory mapped I/O. The registers are defined in
hw-ish-regs.h.
3.2.1 IPC/FW message types
There are two types of messages, one for management of link and other messages
are to and from transport layers.
TX and RX of Transport messages
A set of memory mapped register offers support of multi byte messages TX and
RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains
internal queues to sequence messages and send them in order to the FW.
Optionally the caller can register handler to get notification of completion.
A door bell mechanism is used in messaging to trigger processing in host and
client firmware side. When ISH interrupt handler is called, the ISH2HOST
doorbell register is used by host drivers to determine that the interrupt
is for ISH.
Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell
register has the following format:
Bits 0..6: fragment length (7 bits are used)
Bits 10..13: encapsulated protocol
Bits 16..19: management command (for IPC management protocol)
Bit 31: doorbell trigger (signal H/W interrupt to the other side)
Other bits are reserved, should be 0.
3.2.2 Transport layer interface
To abstract HW level IPC communication, a set of callbacks are registered.
The transport layer uses them to send and receive messages.
Refer to struct ishtp_hw_ops for callbacks.
3.3 ISH Transport layer
Location: drivers/hid/intel-ish-hid/ishtp/
3.3.1 A Generic Transport Layer
The transport layer is a bi-directional protocol, which defines:
- Set of commands to start, stop, connect, disconnect and flow control
(ishtp/hbm.h) for details - A flow control mechanism to avoid buffer overflows
This protocol resembles bus messages described in the following document:
http://www.intel.com/content/dam/www/public/us/en/documents/technical-\
specifications/dcmi-hi-1-0-spec.pdf “Chapter 7: Bus Message Layer”
3.3.2 Connection and Flow Control Mechanism
Each FW client and a protocol is identified by an UUID. In order to communicate
to a FW client, a connection must be established using connect request and
response bus messages. If successful, a pair (host_client_id and fw_client_id)
will identify the connection.
Once connection is established, peers send each other flow control bus messages
independently. Every peer may send a message only if it has received a
flow-control credit before. Once it sent a message, it may not send another one
before receiving the next flow control credit.
Either side can send disconnect request bus message to end communication. Also
the link will be dropped if major FW reset occurs.
3.3.3 Peer to Peer data transfer
Peer to Peer data transfer can happen with or without using DMA. Depending on
the sensor bandwidth requirement DMA can be enabled by using module parameter
ishtp_use_dma under intel_ishtp.
Each side (host and FW) manages its DMA transfer memory independently. When an
ISHTP client from either host or FW side wants to send something, it decides
whether to send over IPC or over DMA; for each transfer the decision is
independent. The sending side sends DMA_XFER message when the message is in
the respective host buffer (TX when host client sends, RX when FW client
sends). The recipient of DMA message responds with DMA_XFER_ACK, indicating
the sender that the memory region for that message may be reused.
DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus message
(that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK.
Additionally to DMA address communication, this sequence checks capabilities:
if thw host doesn’t support DMA, then it won’t send DMA allocation, so FW can’t
send DMA; if FW doesn’t support DMA then it won’t respond with
DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers.
Here ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER,
it’s request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means
that it already did DMA and the message resides at host. Thus, DMA_XFER
and DMA_XFER_ACK act as ownership indicators.
At initial state all outgoing memory belongs to the sender (TX to host, RX to
FW), DMA_XFER transfers ownership on the region that contains ISHTP message to
the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender
needs not wait for previous DMA_XFER to be ack’ed, and may send another message
as long as remaining continuous memory in its ownership is enough.
In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once
(up to IPC MTU), thus allowing for interrupt throttling.
Currently, ISH FW decides to send over DMA if ISHTP message is more than 3 IPC
fragments and via IPC otherwise.
3.3.4 Ring Buffers
When a client initiate a connection, a ring or RX and TX buffers are allocated.
The size of ring can be specified by the client. HID client set 16 and 32 for
TX and RX buffers respectively. On send request from client, the data to be
sent is copied to one of the send ring buffer and scheduled to be sent using
bus message protocol. These buffers are required because the FW may have not
have processed the last message and may not have enough flow control credits
to send. Same thing holds true on receive side and flow control is required.
3.3.5 Host Enumeration
The host enumeration bus command allow discovery of clients present in the FW.
There can be multiple sensor clients and clients for calibration function.
To ease in implantation and allow independent driver handle each client
this transport layer takes advantage of Linux Bus driver model. Each
client is registered as device on the the transport bus (ishtp bus).
Enumeration sequence of messages:
- Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up.
- FW responds with HOST_START_RES_CMD
- Host sends HOST_ENUM_REQ_CMD (enumerate FW clients)
- FW responds with HOST_ENUM_RES_CMD that includes bitmap of available FW
client IDs - For each FW ID found in that bitmap host sends
HOST_CLIENT_PROPERTIES_REQ_CMD - FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties include UUID,
max ISHTP message size, etc. - Once host received properties for that last discovered client, it considers
ISHTP device fully functional (and allocates DMA buffers)
3.4 HID over ISH Client
Location: drivers/hid/intel-ish-hid
The ISHTP client driver is responsible for:
- enumerate HID devices under FW ISH client
- Get Report descriptor
- Register with HID core as a LL driver
- Process Get/Set feature request
- Get input reports
3.5 HID Sensor Hub MFD and IIO sensor drivers
The functionality in these drivers is the same as an external sensor hub.
Refer to
Documentation/hid/hid-sensor.txt for HID sensor
Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space
3.6 End to End HID transport Sequence Diagram
HID-ISH-CLN ISHTP IPC HW
| | | |
| | |—–WAKE UP——————>|
| | | |
| | |—–HOST READY—————>|
| | | |
| | |<—-MNG_RESET_NOTIFY_ACK—– |
| | | |
| |<—-ISHTP_START—— | |
| | | |
| |<—————–HOST_START_RES_CMD——————-|
| | | |
| |——————QUERY_SUBSCRIBER——————–>|
| | | |
| |——————HOST_ENUM_REQ_CMD——————->|
| | | |
| |<—————–HOST_ENUM_RES_CMD——————–|
| | | |
| |——————HOST_CLIENT_PROPERTIES_REQ_CMD——>|
| | | |
| |<—————–HOST_CLIENT_PROPERTIES_RES_CMD——-|
| Create new device on in ishtp bus | |
| | | |
| |——————HOST_CLIENT_PROPERTIES_REQ_CMD——>|
| | | |
| |<—————–HOST_CLIENT_PROPERTIES_RES_CMD——-|
| Create new device on in ishtp bus | |
| | | |
| |–Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-till last one–|
| | | |
probed()
|—-ishtp_cl_connect–>|—————– CLIENT_CONNECT_REQ_CMD————–>|
| | | |
| |<—————-CLIENT_CONNECT_RES_CMD—————-|
| | | |
|register event callback| | |
| | | |
|ishtp_cl_send(
HOSTIF_DM_ENUM_DEVICES) |———-fill ishtp_msg_hdr struct write to HW—– >|
| | | |
| | |<—–IRQ(IPC_PROTOCOL_ISHTP—|
| | | |
|<–ENUM_DEVICE RSP—–| | |
| | | |
for each enumerated device
|ishtp_cl_send(
HOSTIF_GET_HID_DESCRIPTOR |———-fill ishtp_msg_hdr struct write to HW— >|
| | | |
…Response
| | | |
for each enumerated device
|ishtp_cl_send(
HOSTIF_GET_REPORT_DESCRIPTOR |———-fill ishtp_msg_hdr struct write to HW- >|
| | | |
| | | |
hid_allocate_device
| | | |
hid_add_device | | |
| | | |
3.7 ISH Debugging
To debug ISH, event tracing mechanism is used. To enable debug logs
echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable
cat sys/kernel/debug/tracing/trace
3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260
root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/
/sys/bus/iio/devices/
âââ iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.9.auto/iio:device0
â  âââ buffer
â  â  âââ enable
â  â  âââ length
â  â  âââ watermark
…
â  âââ in_accel_hysteresis
â  âââ in_accel_offset
â  âââ in_accel_sampling_frequency
â  âââ in_accel_scale
â  âââ in_accel_x_raw
â  âââ in_accel_y_raw
â  âââ in_accel_z_raw
â  âââ name
â  âââ scan_elements
â  â  âââ in_accel_x_en
â  â  âââ in_accel_x_index
â  â  âââ in_accel_x_type
â  â  âââ in_accel_y_en
â  â  âââ in_accel_y_index
â  â  âââ in_accel_y_type
â  â  âââ in_accel_z_en
â  â  âââ in_accel_z_index
â  â  âââ in_accel_z_type
…
â  â  âââ devices
â  â  â  â  âââ buffer
â  â  â  â  â  âââ enable
â  â  â  â  â  âââ length
â  â  â  â  â  âââ watermark
â  â  â  â  âââ dev
â  â  â  â  âââ in_intensity_both_raw
â  â  â  â  âââ in_intensity_hysteresis
â  â  â  â  âââ in_intensity_offset
â  â  â  â  âââ in_intensity_sampling_frequency
â  â  â  â  âââ in_intensity_scale
â  â  â  â  âââ name
â  â  â  â  âââ scan_elements
â  â  â  â  â  âââ in_intensity_both_en
â  â  â  â  â  âââ in_intensity_both_index
â  â  â  â  â  âââ in_intensity_both_type
â  â  â  â  âââ trigger
â  â  â  â  â  âââ current_trigger
…
â  â  â  â  âââ buffer
â  â  â  â  â  âââ enable
â  â  â  â  â  âââ length
â  â  â  â  â  âââ watermark
â  â  â  â  âââ dev
â  â  â  â  âââ in_magn_hysteresis
â  â  â  â  âââ in_magn_offset
â  â  â  â  âââ in_magn_sampling_frequency
â  â  â  â  âââ in_magn_scale
â  â  â  â  âââ in_magn_x_raw
â  â  â  â  âââ in_magn_y_raw
â  â  â  â  âââ in_magn_z_raw
â  â  â  â  âââ in_rot_from_north_magnetic_tilt_comp_raw
â  â  â  â  âââ in_rot_hysteresis
â  â  â  â  âââ in_rot_offset
â  â  â  â  âââ in_rot_sampling_frequency
â  â  â  â  âââ in_rot_scale
â  â  â  â  âââ name
…
â  â  â  â  âââ scan_elements
â  â  â  â  â  âââ in_magn_x_en
â  â  â  â  â  âââ in_magn_x_index
â  â  â  â  â  âââ in_magn_x_type
â  â  â  â  â  âââ in_magn_y_en
â  â  â  â  â  âââ in_magn_y_index
â  â  â  â  â  âââ in_magn_y_type
â  â  â  â  â  âââ in_magn_z_en
â  â  â  â  â  âââ in_magn_z_index
â  â  â  â  â  âââ in_magn_z_type
â  â  â  â  â  âââ in_rot_from_north_magnetic_tilt_comp_en
â  â  â  â  â  âââ in_rot_from_north_magnetic_tilt_comp_index
â  â  â  â  â  âââ in_rot_from_north_magnetic_tilt_comp_type
â  â  â  â  âââ trigger
â  â  â  â  â  âââ current_trigger
…
â  â  â  â  âââ buffer
â  â  â  â  â  âââ enable
â  â  â  â  â  âââ length
â  â  â  â  â  âââ watermark
â  â  â  â  âââ dev
â  â  â  â  âââ in_anglvel_hysteresis
â  â  â  â  âââ in_anglvel_offset
â  â  â  â  âââ in_anglvel_sampling_frequency
â  â  â  â  âââ in_anglvel_scale
â  â  â  â  âââ in_anglvel_x_raw
â  â  â  â  âââ in_anglvel_y_raw
â  â  â  â  âââ in_anglvel_z_raw
â  â  â  â  âââ name
â  â  â  â  âââ scan_elements
â  â  â  â  â  âââ in_anglvel_x_en
â  â  â  â  â  âââ in_anglvel_x_index
â  â  â  â  â  âââ in_anglvel_x_type
â  â  â  â  â  âââ in_anglvel_y_en
â  â  â  â  â  âââ in_anglvel_y_index
â  â  â  â  â  âââ in_anglvel_y_type
â  â  â  â  â  âââ in_anglvel_z_en
â  â  â  â  â  âââ in_anglvel_z_index
â  â  â  â  â  âââ in_anglvel_z_type
â  â  â  â  âââ trigger
â  â  â  â  â  âââ current_trigger
…
â  â  â  â  âââ buffer
â  â  â  â  â  âââ enable
â  â  â  â  â  âââ length
â  â  â  â  â  âââ watermark
â  â  â  â  âââ dev
â  â  â  â  âââ in_anglvel_hysteresis
â  â  â  â  âââ in_anglvel_offset
â  â  â  â  âââ in_anglvel_sampling_frequency
â  â  â  â  âââ in_anglvel_scale
â  â  â  â  âââ in_anglvel_x_raw
â  â  â  â  âââ in_anglvel_y_raw
â  â  â  â  âââ in_anglvel_z_raw
â  â  â  â  âââ name
â  â  â  â  âââ scan_elements
â  â  â  â  â  âââ in_anglvel_x_en
â  â  â  â  â  âââ in_anglvel_x_index
â  â  â  â  â  âââ in_anglvel_x_type
â  â  â  â  â  âââ in_anglvel_y_en
â  â  â  â  â  âââ in_anglvel_y_index
â  â  â  â  â  âââ in_anglvel_y_type
â  â  â  â  â  âââ in_anglvel_z_en
â  â  â  â  â  âââ in_anglvel_z_index
â  â  â  â  â  âââ in_anglvel_z_type
â  â  â  â  âââ trigger
â  â  â  â  â  âââ current_trigger
…