Short users guide for SLUB
The basic philosophy of SLUB is very different from SLAB. SLAB
requires rebuilding the kernel to activate debug options for all
slab caches. SLUB always includes full debugging but it is off by default.
SLUB can enable debugging only for selected slabs in order to avoid
an impact on overall system performance which may make a bug more
difficult to find.
In order to switch debugging on one can add a option “slub_debug”
to the kernel command line. That will enable full debugging for
all slabs.
Typically one would then use the “slabinfo” command to get statistical
data and perform operation on the slabs. By default slabinfo only lists
slabs that have data in them. See “slabinfo -h” for more options when
running the command. slabinfo can be compiled with
gcc -o slabinfo tools/vm/slabinfo.c
Some of the modes of operation of slabinfo require that slub debugging
be enabled on the command line. F.e. no tracking information will be
available without debugging on and validation can only partially
be performed if debugging was not switched on.
Some more sophisticated uses of slub_debug:
Parameters may be given to slub_debug. If none is specified then full
debugging is enabled. Format:
slub_debug=
slub_debug=
Enable options only for select slabs
Possible debug options are
F Sanity checks on (enables SLAB_DEBUG_FREE. Sorry
SLAB legacy issues)
Z Red zoning
P Poisoning (object and padding)
U User tracking (free and alloc)
T Trace (please only use on single slabs)
A Toggle failslab filter mark for the cache
O Switch debugging off for caches that would have
caused higher minimum slab orders
- Switch all debugging off (useful if the kernel is
configured with CONFIG_SLUB_DEBUG_ON)
F.e. in order to boot just with sanity checks and red zoning one would specify:
slub_debug=FZ
Trying to find an issue in the dentry cache? Try
slub_debug=,dentry
to only enable debugging on the dentry cache.
Red zoning and tracking may realign the slab. We can just apply sanity checks
to the dentry cache with
slub_debug=F,dentry
Debugging options may require the minimum possible slab order to increase as
a result of storing the metadata (for example, caches with PAGE_SIZE object
sizes). This has a higher liklihood of resulting in slab allocation errors
in low memory situations or if there’s high fragmentation of memory. To
switch off debugging for such caches by default, use
slub_debug=O
In case you forgot to enable debugging on the kernel command line: It is
possible to enable debugging manually when the kernel is up. Look at the
contents of:
/sys/kernel/slab/
Look at the writable files. Writing 1 to them will enable the
corresponding debug option. All options can be set on a slab that does
not contain objects. If the slab already contains objects then sanity checks
and tracing may only be enabled. The other options may cause the realignment
of objects.
Careful with tracing: It may spew out lots of information and never stop if
used on the wrong slab.
Slab merging
If no debug options are specified then SLUB may merge similar slabs together
in order to reduce overhead and increase cache hotness of objects.
slabinfo -a displays which slabs were merged together.
Slab validation
SLUB can validate all object if the kernel was booted with slub_debug. In
order to do so you must have the slabinfo tool. Then you can do
slabinfo -v
which will test all objects. Output will be generated to the syslog.
This also works in a more limited way if boot was without slab debug.
In that case slabinfo -v simply tests all reachable objects. Usually
these are in the cpu slabs and the partial slabs. Full slabs are not
tracked by SLUB in a non debug situation.
Getting more performance
To some degree SLUB’s performance is limited by the need to take the
list_lock once in a while to deal with partial slabs. That overhead is
governed by the order of the allocation for each slab. The allocations
can be influenced by kernel parameters:
slub_min_objects=x (default 4)
slub_min_order=x (default 0)
slub_max_order=x (default 3 (PAGE_ALLOC_COSTLY_ORDER))
slub_min_objects allows to specify how many objects must at least fit
into one slab in order for the allocation order to be acceptable.
In general slub will be able to perform this number of allocations
on a slab without consulting centralized resources (list_lock) where
contention may occur.
slub_min_order specifies a minim order of slabs. A similar effect like
slub_min_objects.
slub_max_order specified the order at which slub_min_objects should no
longer be checked. This is useful to avoid SLUB trying to generate
super large order pages to fit slub_min_objects of a slab cache with
large object sizes into one high order page. Setting command line
parameter debug_guardpage_minorder=N (N > 0), forces setting
slub_max_order to 0, what cause minimum possible order of slabs
allocation.
SLUB Debug output
Here is a sample of slub debug output:
====================================================================
BUG kmalloc-8: Redzone overwritten
INFO: 0xc90f6d28-0xc90f6d2b. First byte 0x00 instead of 0xcc
INFO: Slab 0xc528c530 flags=0x400000c3 inuse=61 fp=0xc90f6d58
INFO: Object 0xc90f6d20 @offset=3360 fp=0xc90f6d58
INFO: Allocated in get_modalias+0x61/0xf5 age=53 cpu=1 pid=554
Bytes b4 0xc90f6d10: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ……..ZZZZZZZZ
Object 0xc90f6d20: 31 30 31 39 2e 30 30 35 1019.005
Redzone 0xc90f6d28: 00 cc cc cc .
Padding 0xc90f6d50: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
=======================
FIX kmalloc-8: Restoring Redzone 0xc90f6d28-0xc90f6d2b=0xcc
If SLUB encounters a corrupted object (full detection requires the kernel
to be booted with slub_debug) then the following output will be dumped
into the syslog:
- Description of the problem encountered
This will be a message in the system log starting with
===============================================
BUG
INFO:
INFO: Slab
INFO: Object